1.	Simplify the expres	ssion: $\sin\left(\frac{\pi}{2} + x\right)$	$+\cos(\pi+x)$	
	(A)0	(B) $2 \cos x$	$(C) - 2\cos x$ (D) $2\sin x$	(E) NOTA

2. If
$$\sin 2\theta = \frac{7}{9}$$
 and $0 < \theta < \frac{\pi}{2}$, what is $\sin \theta + \cos \theta$?

(A) $\frac{4}{3}$ (B) $\frac{7}{6}$ (C) $\frac{5}{4}$ (D) $\frac{2}{3}$ (E) NOTA

3. For a given angle
$$\theta$$
, find the value of $\cos \theta$ if $\tan \theta = \frac{2}{\sqrt{5}}$ and $\sin \theta < 0$.
(A) $\frac{2}{3}$ (B) $-\frac{2}{3}$ (C) $\frac{\sqrt{5}}{3}$ (D) $-\frac{\sqrt{5}}{3}$ (E) NOTA

4. Which of the following parametric equations represent the elliptic equation $25(x-3)^2 + 4(y+1)^2 = 100$?

A)
$$x = 5\cos\theta + 3$$
, $y = 2\sin\theta - 1$
B) $x = 5\sin\theta - 3$, $y = 4\cos\theta + 1$
C) $x = 2\cos\theta + 3$, $y = 5\sin\theta - 1$
D) $x = 2\cos\theta - 3$, $y = 5\sin\theta + 1$
E) NOTA

5. Which one of the following is positive value when the point P(-4,5) is on the terminal side of angle θ in standard position?

- (A) $\sin \theta \cos \theta$ (B) $\csc \theta \tan \theta$ (C) $\tan \theta \sin \theta$ (D) $\sin \theta \sec \theta$ (E) NOTA
- 6. Evaluate $\sum_{n=1}^{180} \cos n^{\circ}$. (A) 0 (B) 1 (C) 2 (D) -1 (E) NOTA

7. If $\sin \theta$ and $\cos \theta$ are two roots of an equation $x^2 + ax + b = 0$ for some angle θ , which of the following must be true?

(A) $a^2 + 2b = -1$ (D) $a^2 + 4b = -1$

(A)
$$a^2 + 2b = -1$$
 (D) $a^2 + 4b = -1$
(B) $a^2 - 2b = 1$ (E) NOTA

8. Which one of the following is equal to $\arcsin\left(\frac{1}{5}\right) + \arccos\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{5}\right) + \operatorname{arccot}\left(\frac{1}{5}\right)?$ (A) 0 (B) $\frac{\pi}{2}$ (C) π (D) $\frac{3\pi}{2}$ (E) NOTA

(A) 2

(B) 5

(C) 23

(D) 25

(E) NOTA

$(A)\frac{\pi}{2}$	(B) π	(C) 2π	$(D)\frac{5\pi}{2}$	(E) NOTA					
10. Simplify $\arccos\left(\cos\frac{5\pi}{4}\right)$.									
$(A)\frac{\pi}{4}$	$(B)\frac{3\pi}{4}$	$(C)\frac{5\pi}{4}$	$(D) - \frac{\pi}{4}$	(E) Ì	NOTA				
11. Which one of the following trigonometric expression is identical to $\cos x \cdot (\sec x - \cos x)^{\alpha}$ (A) $\cos^2 x$ (B) $\sin^2 x$ (C) $\tan^2 x$ (E) NOTA									
12. When $\cos \theta = (A) \frac{25}{169}$				· 119 (E) I	NOTA				
13. What is the value of $\sin\left(2\arcsin\frac{1}{3}\right)$? (A) $\frac{2}{3}$ (B) $\frac{4\sqrt{2}}{3}$ (C) $\frac{4\sqrt{2}}{9}$ (D) $\frac{2}{9}$ (E) NOTA									
3		J	,	,	(E) NOTA				
14. Given that si $(A) \frac{3}{4}$	$ \text{m} x - \sin y = \frac{1}{5} \\ \text{(B)} - \frac{1}{5} $				NOTA				
15. Which of the following angles satisfies the inequality $2^{\cos x} + 2^{\sin x} < 2^{\cos x + \sin x} + 1$?									
	(B) 1		92° (D) 3	10° (E) Ì	NOTA				
16. Let $f(x) = \sin x$ and $g(x) = \cos x$ be two functions defined on $[0, \frac{\pi}{2}]$. Which of the four functions, $f(f(x)), f(g(x)), g(f(x)), g(g(x))$, are increasing over $[0, \frac{\pi}{2}]$? (A) $f(g(x))$ and $g(f(x))$ (B) $f(f(x))$ and $g(g(x))$ (C) $f(g(x))$ and $g(g(x))$ (E) NOTA									
17. If $\tan \theta + \cot \theta = 5$, what is the value of $\csc^2 \theta + \sec^2 \theta$?									

9. Find the sum of all roots of the equation $\cos^2 x - \sin x = 1$ where $0 < x < 2\pi$.

18. When the solution set of the equation

$$[\sin x] + [2\sin x] + [3\sin x] = 1$$
 for x in $\left[0, \frac{\pi}{2}\right]$ is written as $\alpha \le x < \beta$,

what is $\cos(\alpha + \beta)$? (|x| is the greatest integer function of x.)

- $(A)\frac{\sqrt{6}}{3} + \frac{1}{6}$ $(B)\frac{\sqrt{6}}{3} \frac{1}{6}$ $(C)\frac{\sqrt{6}}{6} + \frac{1}{3}$ $(D)\frac{\sqrt{6}}{6} \frac{1}{3}$ (E) NOTA

19. Which of the following intervals can be a restricted domain of the function f(x) =

$$\frac{1}{\sqrt{1-4\sin^2 x}}?$$

$$(\Delta) - \frac{\pi}{2} < x$$

- (A) $-\frac{\pi}{3} < x < \frac{\pi}{3}$ (B) $\frac{\pi}{3} < x < \frac{2\pi}{3}$ (C) $\frac{\pi}{6} < x < \frac{5\pi}{6}$ (D) $\frac{5\pi}{6} < x < \frac{7\pi}{6}$

(E) NOTA

20. Which pair of the following graphs coincide?

- a) $y = 3\sin 2\left(x \frac{\pi}{4}\right)$
- b) $y = -3 \sin 2x$
- c) $y = -3\cos 2x$
- d) $y = 3\cos 2(x \frac{\pi}{4})$
- (A) a and b
- (B) b and c
- (C) c and d
- (D) a and c
- (E) NOTA

21. Four points A, B, C, D lie on a circle to form a quadrilateral ABCD. Let α , β , γ , δ denote four interior angles of the quadrilateral associated with A, B, C, D, respectively. Which of the following is NOT true?

(A) $\cos \beta \cos \delta = \sin \beta \sin \delta + 1$

(D) $\cos \beta + \cos \delta = 0$

(B) $\sin \alpha \cos \gamma + \cos \alpha \sin \gamma = 0$

(E) NOTA

(C) $\sin^2 \alpha + \cos^2 \gamma = 1$

22. What is $\cot 80^{\circ} \cot 55^{\circ} + \cot 80^{\circ} + \cot 55^{\circ}$?

- (A)0
- (B) 1
- (C) 2
- (D) 3
- (E) NOTA

23. Let a_n be a sequence which represents the number of intersecting points of two graphs, $y = \sin x$ and $y = \cos 2nx$, over the open interval (0, 2π). Write the general term of the sequence a_n .

- (A) 2n
- (B) 4n
- (C) 4n-1 (D) 8n-5
- (E) NOTA

24. Which of the following is equal to the sum of the infinite geometric series

- $\sin x + \sin x \cos^2 x + \sin x \cos^4 x + \sin x \cos^6 x + \cdots$ for x in $(0,\pi)$?
- (A) $\sin x$
- (B) $\csc x$
- (C) $\cos x$
- (D) $\cos x$
- (E) NOTA

- 25. How many solutions to the equation $\cos^2 x 3\cos x 4 = 0$ are there on the open interval $(0, 2\pi)$? (A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA 26. Aaron and Bill watch a drone flying 120 feet above the horizontal ground. The angle of the elevation from Aaron to the drone is 45° and from Bill to the drone is 60°. Assuming that the positions of Aaron and Bill and the point of perpendicular projection from the drone to the ground form a line, what is the smaller possible distance between Aaron and Bill? (B) $120 - 120\sqrt{3}$ (C) $120 + \sqrt{3}$ (A) $120 - 40\sqrt{3}$ (D) $120\sqrt{3}$ (E) NOTA 27. Let F_n be the sequence with $F_1 = F_2 = 1$, $F_{n+2} = F_{n+1} + F_n$. Define a sequence, z_n , of complex numbers by $z_n = \cos F_n + i \sin F_n$. Which of the following is true for z_n ? (D) $z_n^2 = z_{2n}$ (A) $z_{n+2} = z_{n+1} + z_n$ (E) NOTA (B) $z_{n+1} = 2z_n$ (C) $z_{n+2} = z_{n+1}z_n$
- 28. Let G_n be the sequence with $G_1 = 1$, $G_{n+1} = 2G_n$. Define a sequence, W_n , of complex numbers by $w_n = \cos G_n + i \sin G_n$. Which of the following is true for w_n ? (D) $w_n^2 = w_{n+1}$ (A) $w_{n+2} = w_{n+1} + w_n$ (E) NOTA (B) $w_{n+1} = 2w_n$
- 29. Which of the following is equal to $\cos \frac{2\pi}{5}$?

(C) $w_{n+2} = w_{n+1}w_n$

- (A) $\frac{\sqrt{5}+1}{4}$ (B) $\frac{\sqrt{5}-1}{4}$ (C) $\frac{\sqrt{6}+\sqrt{2}}{4}$ (D) $\frac{\sqrt{6}-\sqrt{2}}{4}$ (E) NOTA
- 30. Evaluate the product: $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$
 - (A) $\frac{1}{8}$ (B) $\frac{1}{16}$ (C) $\frac{1}{32}$ (D) $\frac{1}{64}$ (E) NOTA